Search results for "drift velocity"
showing 10 items of 14 documents
Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons
2010
The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29-0.04+0.05)% in the barrel and (0.54-0.04+0.06)% in the endcaps. The same data are used to measure the drift velocity of ionization electrons …
Electrophoresis of colloidal dispersions in the low-salt regime
2007
We study the electrophoretic mobility of spherical charged colloids in a low-salt suspension as a function of the colloidal concentration. Using an effective particle charge and a reduced screening parameter, we map the data for systems with different particle charges and sizes, including numerical simulation data with full electrostatics and hydrodynamics and experimental data for latex dispersions, on a single master curve. We observe two different volume fraction-dependent regimes for the electrophoretic mobility that can be explained in terms of the static properties of the ionic double layer.
Drift velocity of free electrons in liquid argon
1999
Abstract A measurement of the drift velocity of free electrons in liquid argon has been performed. Free electrons have been produced by photoelectric effect using laser light in a so-called “laser chamber”. The results on the drift velocity vd are given as a function of the electric field strength in the range 0.5 kV / cm ⩽| E |⩽12.6 kV / cm and the temperature in the range 87 K ⩽T⩽94 K . A global parametrization of v d (| E |,T) has been fitted to the data. A temperature dependence of the electron drift velocity is observed, with a mean value of Δ v d /( Δ T v d )=(−1.72±0.08)%/ K in the range of 87–94 K.
Spin texture motion in antiferromagnetic and ferromagnetic nanowires
2017
We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of ferromagnetic and antiferromagnetic domain walls in one dimensional systems. To demonstrate the power of this formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study current induced domain wall motion and compute the drift velocity. For the antiferromagnetic case, we show that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application of a magnetic field would influence the antiferromagnetic do…
Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy gamma-rays
2014
NEXT-MM is a general-purpose high pressure (10 bar, $\sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $\times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT $0\nu\beta\beta$ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $\gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($\epsilon$ = 26, 30, 59.5 keV). The localized…
A Time Projection Chamber with GEM-Based Readout
2016
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
Observation and applications of single-electron charge signals in the XENON100 experiment
2014
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experim…
Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures
2019
We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all $E/P$, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low $E/P$ in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger $E/P$. Drift velocities in xenon-helium mixtures are found to be theoretically well pred…
Parametric Excitation of Density Waves in Drifting Electron-Hole Plasmas
1972
The effect of the electronic drift velocity on the conditions for parametric excitation in electron-hole plasmas is investigated in the two-mode approximation using a Vlasov-equations approach. The results show that when the electronic drift velocity approaches the phase velocity of the lower frequency mode of the plasma, a considerable lowering of the threshold for the onset of parametric excitation occurs, thus resulting in more favorable conditions for experimental observation of the process. The dependence of the threshold on other relevant physical parameters involved, such as the electron-to-hole mass and temperature ratios, is also investigated.
Nonlinear nonviscous hydrodynamical models for charge transport in the framework of extended thermodynamic methods
2002
This paper develops a procedure, based on methods of extended thermodynamics, to design nonlinear hydrodynamical models for charge transport in metals or in semiconductors, neglecting viscous phenomena. Models obtained in this way allow the study of the motion of electric charges in the presence of arbitrary external electric fields and may be useful when one wishes to study phenomena in a neighborhood of a stationary nonequilibrium process: indeed, the drift velocity of the charge gas with respect to the crystal lattice is not regarded as a small parameter.